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Abstract

In this paper, we prove Kirchberg-type inequalities for any Kähler spin foliation. Their limiting-
cases are then characterized as being transversal minimal Einstein foliations. The key point is to
introduce the transversal Kählerian twistor operators.
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1. Introduction

On a compact Riemannian spin manifold (Mn, gM), Th. Friedrich[1] showed that any
eigenvalueλ of the Dirac operator satisfies

λ2 ≥ n

4(n − 1)
S0, (1.1)
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whereS0 denotes the infimum of the scalar curvature ofM. The limiting case in(1.1) is
characterized by the existence of aKilling spinor. As a consequenceM is Einstein. Kirchberg
[4] established that, on such manifolds any eigenvalueλ satisfies the inequalities

λ2 ≥




m + 1

4m
S0 if m is odd,

m

4(m − 1)
S0 if m is even.

On a compact Riemannian spin foliation (M, gM,F) of codimensionq with a bundle-like
metricgM such that the mean curvatureκ is a basic coclosed 1-form, Jung[13] showed that
any eigenvalueλ of the transversal Dirac operator satisfies

λ2 ≥ q

4(q − 1)
K∇

0 , (1.2)

whereK∇
0 = inf M(σ∇ + |κ|2), hereσ∇ denotes the transversal scalar curvature with the

transversal Levi–Civita connection∇. The limiting case in(1.2)is characterized by the fact
thatF is minimal (κ = 0) and transversally Einstein (seeTheorem 3.1). The main result of
this paper is the following.

Theorem 1.1. Let (M, gM,F) be a compact Riemannian manifold with a Kähler spin
foliation F of codimension q = 2m and a bundle-like metric gM . Assume that κ is a basic
coclosed 1-form, then any eigenvalue λ of the transversal Dirac operator satisfies:

λ2 ≥ m + 1

4m
K∇

0 if m is odd (1.3)

and

λ2 ≥ m

4(m − 1)
K∇

0 if m is even. (1.4)

The limiting case in(1.3) is characterized by the fact that the foliation is minimal
and by existence of a transversal Kählerian Killing spinor (seeTheorem 4.3). We refer
to Theorem 4.4for the equality case in(1.4).

We point out that inequality(1.3)was proved by Jung[14] with the additional assumption
thatκ is transversally holomorphic. The author would like to thank Oussama Hijazi for his
support.

2. Foliated manifolds

In this section, we summarize some standard facts about foliations. For more details, we
refer to[8,13].

Let (M, gM) be a (p + q)-dimensional Riemannian manifold and a foliationF of codi-
mensionq and let∇M be the Levi–Civita connection associated withgM. We consider the
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exact sequence

0 −→ L
ι−→ TM

π−→ Q −→ 0,

whereL is the tangent bundle ofTM andQ = TM/L � L⊥ the normal bundle. We assume
gM to be abundle-like metric onQ, that means the induced metricgQ verifies the holonomy
invariance condition:

LXgQ = 0 ∀X ∈ Γ (L),

whereLX is the Lie derivative with respect toX. Let∇ be the connection onQ defined by:

∇Xs =
{

π[X, Ys] ∀X ∈ Γ (L),

π(∇M
X Ys) ∀X ∈ Γ (L⊥),

wheres ∈ Γ (Q) andYs is the unique vector ofΓ (L⊥) such thatπ(Ys) = s. The connection
∇ is metric and torsion-free. The curvature of∇ acts onΓ (Q) by:

R∇ (X, Y )s = ∇X∇Y s − ∇Y∇Xs − ∇[X,Y ]s ∀X, Y ∈ χ(M).

The transversal Ricci curvature is defined by:

ρ∇ : Γ (Q) → Γ (Q), X 	→ ρ∇ (X) =
q∑

j=1

R∇ (X, ej)ej.

Also, we define the transversal scalar curvature:

σ∇ =
q∑

i=1

gQ(ρ∇ (ei), ei) =
q∑

i,j=1

R∇ (ei, ej, ej, ei),

where {ei}i=1,...,q is a local orthonormal frame ofQ and R∇ (X, Y, Z, W) =
gQ(R∇ (X, Y )Z, W), for all X, Y, Z, W ∈ Γ (Q). The foliationF is said to be transversally
Einstein if and only if

ρ∇ = 1

q
σ∇ Id

with constant transversal scalar curvature. The mean curvature ofQ is given by:

κ(X) = gQ(τ, X) ∀X ∈ Γ (Q),
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whereτ = ∑p
l=1 II(el, el), with {el}l=1,...,p is a local orthonormal frame ofΓ (L) andII is

the second fundamental form ofF defined by:

II : Γ (L) × Γ (L) → Γ (Q), (X, Y ) 	→ II(X, Y ) = π(∇M
X Y ).

We define basicr-forms by:

Ωr
B(F) = {Φ ∈ ΛrT ∗M|X�Φ = 0 andX�dΦ = 0, ∀X ∈ Γ (L)},

where d is the exterior derivative andX� is the interior product. AnyΦ ∈ Ωr
B(F) can be

locally written as

∑
1≤j1<···<jr≤q

βj1,...,jr dyj1 ∧ · · · ∧ dyjr ,

where (∂/∂xl)βj1,...,jr = 0∀l = 1, . . . , p. With the local expression of basicr-forms, one
can verify thatκ is closed ifF is isoparametric (κ ∈ Ω1

B(F)). For allr ≥ 0:

d(Ωr
B(F)) ⊂ Ωr+1

B (F).

We denote bydB = d|ΩB(F) whereΩB(F) is the tensor algebra ofΩr
B(F). We have the

following formulas:

dB =
q∑

i=1

e�
i ∧ ∇ei and δB = −

q∑
i=1

ei�∇ei + κ �,

whereδB is the adjoint operator ofdB with respect to the induced scalar product and
{ei}i=1,...,q is a local orthonormal frame ofQ.

3. The transversal Dirac operator on Kähler Foliations

In this section, we start by recalling some facts on Riemannian foliations which could be
found in[9–11,13]. For completeness, we also sketch a straightforward proof of inequality
(1.2)established in[13] and end by recalling well-known facts (see[4,5,2,3,14]) on Kähler
spin foliations.

On a foliated Riemannian manifold (M, gM,F), a transversal spin structure is a pair
(SpinQ, η) where SpinQ is a Spinq-principal fibre bundle overM andη a 2-fold cover such
that the following diagram commutes:
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The maps SpinQ × Spinq → SpinQ, and SOQ × SOq −→ SOQ, are, respectively, the
actions of Spinq and SOq on the principal fibre bundles SpinQ and SOQ. In this case,
F is called a transversal spin foliation. We define the foliated spinor bundle by:S(F) :=
SpinQ ×ρ Σq, whereρ : Spinq → Aut

(
Σq

)
, is the complex spin representation andΣq

is aC vector space of dimensionN with N = 2[q/2], where [ ] stands for the integer part.
Recall that the Clifford multiplicationM onS(F) is given by:

M : Γ (Q) × Γ (S(F)) → Γ (S(F)), (X, Ψ ) 	→ X · Ψ.

There is a natural Hermitian product onS(F) such that, for allX, Y ∈ Γ (Q), the following
relations are true:

〈X · Ψ, Φ〉 = −〈Ψ, X · Φ〉, X(〈Ψ, Φ〉) = 〈∇XΨ, Φ〉 + 〈Ψ, ∇XΦ〉,
∇Y (X · Ψ ) = (∇YX) · Ψ + X · (∇YΨ ) ,

where∇ is the Levi–Civita connection onS(F) andΨ, Φ ∈ Γ (S(F)).
The transversal Dirac operator[9,10] is locally given by:

DtrΨ =
q∑

i=1

ei · ∇eiΨ − 1

2
κ · Ψ (3.1)

for all Ψ ∈ Γ (S(F)). We can easily prove using Green’s theorem[12] that this operator
is formally self adjoint. Furthermore, in[10] it is proved that ifF is isoparametric and
δBκ = 0, then we have the Schrödinger–Lichnerowicz formula:

D2
trΨ = ∇�

tr∇trΨ + 1

4
K∇

σ Ψ,

whereK∇
σ = σ∇ + |κ|2 and

∇�
tr∇trΨ = −

q∑
i=1

∇2
ei,ei

Ψ + ∇κΨ

with ∇2
X,Y = ∇X∇Y − ∇∇XY , for all X, Y ∈ Γ (TM).

Denote byP the transversal twistor operator defined by

P : Γ (S(F))
∇ tr

−→ Γ (Q∗ ⊗ S(F))
π−→ Γ (kerM),

whereπ is the orthogonal projection on the kernel of the Clifford multiplicationM. With
respect to a local orthonormal frame{e1, . . . , eq}, for all Ψ ∈ Γ (S(F)), one has

PΨ =
q∑

i=1

e∗
i ⊗

(
∇eiΨ + 1

q
ei · DtrΨ + 1

2q
ei · κ · Ψ

)
. (3.2)
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For any spinor fieldΨ , one can easily show that

q∑
i=1

ei · PeiΨ = 0. (3.3)

Now we give a simple proof of the following theorem.

Theorem 3.1 (Jung[13]). Let (M, gM,F) be a compact Riemannian manifold with a spin
foliation F of codimension q and a bundle-like metric gM with κ ∈ Ω1

B(F). Assume that
δBκ = 0 and let λ be an eigenvalue of the transversal Dirac operator, then

λ2 ≥ q

4(q − 1)
K∇

0 . (3.4)

Proof. For allΨ ∈ Γ (S(F)), we have using identities(3.2), (3.3)and(3.1):

|PΨ |2 = |∇ trΨ |2 − 1

q
|DtrΨ |2 − 1

q
�(DtrΨ, κ · Ψ ) − 1

4q
|κ|2|Ψ |2.

For any spinor fieldΦ, we have that (Φ, κ · Φ) = −(κ · Φ, Φ) = −(Φ, κ · Φ), so the scalar
product (Φ, κ · Φ) is a pure imaginary function. Hence for any eigenspinorΨ of the transver-
sal Dirac operator, we obtain

∫
M

|PΨ |2 + 1

4q

∫
M

|κ|2|Ψ |2 =
∫

M

|∇ trΨ |2 − 1

q

∫
M

λ2|Ψ |2

from which we deduce(3.4) with the help of the Schrödinger–Lichnerowicz formula. Fi-
nally, we can easily prove in the limiting case thatF is minimal i.e.κ = 0, and transversally
Einstein. �

A foliation F is called K̈ahler if there exists a complex parallel orthogonal struc-
tureJ : Γ (Q) −→ Γ (Q) (dimQ = q = 2m). Let Ω be the associated K̈ahler, i.e., for all
X, Y ∈ Γ (Q), Ω(X, Y ) = gQ(J(X), Y ) = −gQ(X, J(Y )). The Kähler form can be locally
expressed as

Ω = 1

2

q∑
i=1

ei · J(ei) = −1

2

q∑
i=1

J(ei) · ei

and for allX ∈ Γ (Q), we have [Ω, X] := Ω · X − X · Ω = 2J(X). Under the action of the
Kähler form, the spinor bundle splits into an orthogonal sum

S(F) = m⊕
r=o

Sr(F),

whereSr(F) is an eigenbundle associated with the eigenvalueiµr = i(2r − m) of the Kähler
form Ω. Moreover, the spinor bundle of a Kähler spin foliation carries a parallel anti-linear
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mapj satisfying the relations:

j2 = (−1)m(m+1)/2Id, [X, j] = 0, (jΨ, jΦ) = (Φ, Ψ )

and we havejΨr = (jΨ )m−r. For allX ∈ Γ (Q), we have

p+(X) · Sr(F) ⊂ Sr+1(F) and p−(X) · Sr(F) ⊂ Sr−1(F),

wherep±(X) = (X ∓ iJ(X))/2. We define the operator̃Dtr by

D̃trΨ =
q∑

i=1

J(ei) · ∇eiΨ − 1

2
J(κ) · Ψ.

The local expression of̃Dtr is independent of the choice of the local frame and by Green’s
theorem[12], we prove that this operator is self-adjoint. On a Kähler spin foliation, the
operatorsDtr andD̃tr satisfy:

[Ω, Dtr] = 2D̃tr, (3.5)

[Ω, D̃tr] = −2Dtr, (3.6)

[Ω, D2
tr] = 0, (3.7)

DtrD̃tr + D̃trDtr = 0, (3.8)

D̃2
tr = D2

tr. (3.9)

We should point out thatEqs. (3.7)–(3.9)are true under the assumptions thatF is isopara-
metric andδBκ = 0. Now we define the two operatorsD+ andD− by

D+ = 1
2(Dtr − iD̃tr) and D− = 1

2(Dtr + iD̃tr). (3.10)

Furthermore,Dtr splits intoD+ andD−, and we have the two exact sequences:

Γ (Sm(F))
D−−→ · · · Γ (Sr(F))

D−−→ Γ (Sr−1(F))
D−−→ · · · Γ (S0(F)), (3.11)

Γ (S0(F))
D+−→ · · · Γ (Sr(F))

D+−→ Γ (Sr+1(F))
D+−→ · · · Γ (Sm(F)). (3.12)

4. Eigenvalues of the transversal Dirac operator

In this section, we prove Kirchberg-type inequalities by using the transversal Kählerian
twistor operators on K̈ahler spin foliations. We refer to[7,6].

Definition 4.1. On a K̈ahler spin foliation, we define the transversal Kählerian twistor
operators by

P(r) : Γ (Sr(F))
∇ tr

−→ Γ (Q∗ ⊗ Sr(F))
πr−→ Γ (kerMr),
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whereMr is the transversal Clifford multiplication defined by

Mr : Γ (Q∗ ⊗ Sr(F)) → Γ (Sr−1(F)) ⊕ Γ (Sr+1(F)),

X ⊗ Ψr 	→ p−(X) · Ψr ⊕ p+(X) · Ψr.

For all r ∈ {0, . . . , m} andΨr ∈ Γ (Sr(F)), we have

P(r)Ψr =
q∑

i=1

e∗
i ⊗ (∇eiΨr + arp−(ei) ·D+Ψr + brp+(ei) ·D−Ψr), (4.1)

whereD± = D± + (1/2)p±(κ) with ar = 1/(2(r + 1)) andbr = 1/(2(m − r + 1)). For
any spinor fieldΨr ∈ Γ (Sr(F)), we can easily prove

q∑
i=1

ei · P(r)
ei

Ψr = 0. (4.2)

Remark 4.2. For any non-zero eigenvalueλ of Dtr, there exists a spinor fieldΨ ∈ Γ (S(F))
called of type (r, r + 1), such thatDtrΨ = λΨ andΨ = Ψr + Ψr+1, with r ∈ {0, . . . , m −
1}. By using(3.10)–(3.12)it follows thatD−Ψr = D+Ψr+1 = 0,D−Ψr+1 = λΨr, D+Ψr =
λΨr+1 and‖Ψr‖L2 = ‖Ψr+1‖L2.

Proof. Let ϕ be an eigenspinor ofDtr. There exists anr such thatϕr does not vanish. Let
Ψ = 1

λ
D−D+ϕr + D+ϕr, one can easily get thatDtrΨ = λΨ . �

Theorem 4.3. Let (M, gM,F) be a compact Riemannian manifold with a Kähler spin
foliation F of codimension q = 2m and a bundle-like metric gM with κ ∈ Ω1

B(F) and
δBκ = 0. Then any eigenvalue λ of the transversal Dirac operator, satisfies

λ2 ≥ m + 1

4m
K∇

0 . (4.3)

If Ψ is an eigenspinor of type (r, r + 1) associated with an eigenvalue λ satisfying equality
in (4.3), then r = (m − 1)/2, the foliation F is minimal and for all X ∈ Γ (Q), the spinor
Ψ satisfies

∇XΨ + λ

2(m + 1)
(X · Ψ − iεJ(X) · Ψ̄ ) = 0, (4.4)

where ε = (−1)(m−1)/2, and Ψ̄ := (−1)r(Ψr − Ψr+1). As a consequence m is odd and F is
transversally Einstein with non-negative constant transversal curvature σ∇ .

Proof. For allΨr ∈ Γ (Sr(F)), using identities(4.1) and (4.2), we have

|P(r)Ψr|2 =
q∑

i=1

|P(r)
ei

Ψr|2 =
q∑

i=1

(P(r)
ei

Ψr, ∇eiΨr)

=
q∑

i=1

(∇eiΨr + arp−(ei) ·D+Ψr + brp+(ei) ·D−Ψr, ∇eiΨr).
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Finally we obtain:

|P(r)Ψr|2 = |∇ trΨr|2 − ar|D+Ψr|2 − br|D−Ψr|2. (4.5)

Let λ be an eigenvalue ofDtr and letΨ an eigenspinor of type (r, r + 1). Applying equality
(4.5) to Ψr, one gets

|P(r)Ψr|2 = |∇ trΨr|2 − arλ
2|Ψr+1|2 − arλ�(Ψr+1, p+(κ) · Ψr)

−ar

4
|p+(κ) · Ψr|2 − br

4
|p−(κ) · Ψr|2.

By the Schr̈odinger–Lichnerowicz formula and by the fact thatΨr andΨr+1 have the same
L2-norms, we get∫

M

|P(r)Ψr|2 + ar

4

∫
M

|p+(κ) · Ψr|2 + br

4

∫
M

|p−(κ) · Ψr|2

=
∫

M

(
(1 − ar)λ

2 − 1

4
K∇

σ

)
|Ψr|2 − arλ

∫
M

�(Ψr+1, p+(κ) · Ψr). (4.6)

Similarly applying(4.5) to Ψr+1, we obtain∫
M

|P(r+1)Ψr+1|2 + ar+1

4

∫
M

|p+(κ) · Ψr+1|2 + br+1

4

∫
M

|p−(κ) · Ψr+1|2

=
∫

M

(
(1 − br+1)λ2 − 1

4
K∇

σ

)
|Ψr+1|2 + br+1λ

∫
M

�(Ψr+1, p+(κ) · Ψr), (4.7)

whereK∇
σ = σ∇ + |κ|2. In order to get rid the termλ

∫
M

�(Ψr+1, p+(κ) · Ψr), since the l.h.s.
of (4.6) and (4.7)are non-negative, dividing(4.6) by ar and(4.7) by br+1 then summing
up, we find by substituting the values ofar andbr+1:

λ2 ≥ m + 1

4m
K∇

0 .

Now, we discuss the limiting case of inequality(4.3). Dividing (4.6) by ar and(4.7) by
br+1 then summing up as before, and substitutingar, br+1 and λ2 by their values, we
easily deduce thatκ = 0, P(r)Ψr = 0 andP(r+1)Ψr+1 = 0. Hence by(4.6), we find that
λ2 = (1/4(1− ar))σ0 = (m + 1/4m)σ0 whereσ0 = inf M σ∇ , thenr = (m − 1)/2 andm
is odd. It remains to prove thatΨ satisfies(4.4). For r = (m − 1)/2, by definition of the
Kählerian twistor operators, for allj ∈ {1, . . . , q}, we obtain

∇ejΨr + λ

m + 1
p−(ej) · Ψr+1 = 0

and

∇ejΨr+1 + λ

m + 1
p+(ej) · Ψr = 0.

Summing up the two equations, we get(4.4) for X = ej. Using Ricci identity in(4.4), one
easily proves thatF is transversally Einstein.�
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Theorem 4.4. Under the same conditions as in Theorem 4.3for m even, any eigenvalue λ

of the transversal Dirac operator satisfies

λ2 ≥ m

4(m − 1)
K∇

0 . (4.8)

If Ψ is an eigenspinor of type (r, r + 1) associated with an eigenvalue satisfying equality in
(4.8), then r = m/2, the foliation F is minimal and Ψ satisfies for all X ∈ Γ (Q):

∇XΨr+1 = −λ

q
(X − iJX) · Ψr. (4.9)

Proof. Let Ψ an eigenspinor of type (r, r + 1) associated with any eigenvalueλ of the
transversal Dirac operatorDtr. Recalling equalities(4.6) and (4.7), we have

0 ≤
∫

M

(
(1 − ar)λ

2 − 1

4
K∇

σ

)
|Ψr|2 − arλ

∫
M

�(Ψr+1, p+(κ) · Ψr) (4.10)

and

0 ≤
∫

M

(
(1 − br+1)λ2 − 1

4
K∇

σ

)
|Ψr+1|2 + br+1λ

∫
M

�(Ψr+1, p+(κ) · Ψr). (4.11)

Hence ifλ
∫
M

�(Ψr+1, p+(κ) · Ψr) ≤ 0, then by(4.11)

λ2 ≥ 1

4(1− br+1)
K∇

0 ,

The antilinear isomorphismj sendsSr(F) to Sm−r(F). This allows the choice ofµr to be
non-negative (i.e.r ≥ m/2) whereµr is the eigenvalue associated withΨr. Then a careful
study of the graph of the function 1/(1 − br+1), yields(4.8).

On the other hand ifλ
∫
M

�(Ψr+1, p+(κ) · Ψr) > 0. ApplyingEq. (4.5)to the spinorjΨ ,
which is a spinor of type (m − (r + 1), m − r), we find the same inequalities as(4.10) and
(4.11), then

λ2 >
1

1 − ar

K∇
0

4
.

As before we can chooseµm−(r+1) ≥ 0 (i.e. r ≤ m
2 − 1). A careful study of the graph of

the function 1/(1 − ar) gives inequality(4.8).
Now we discuss the limiting case of(4.8). As we have seen, it could not be achieved if

λ
∫
M

�(Ψr+1, p+(κ) · Ψr) > 0, so only the other case should be considered. By(4.7), one
has ∫

M

|P(r+1)Ψr+1|2 + ar+1

4

∫
M

|p+(κ) · Ψr+1|2 + br+1

4

∫
M

|p−(κ) · Ψr+1|2 − br+1λ

×
∫

M

�(Ψr+1, p+(κ) · Ψr) = (1 − br+1)

×
∫

M

(
m

4(m − 1)
K∇

0 − 1

4(1− br+1)
K∇

σ

)
|Ψr+1|2. (4.12)
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Sincem/(m − 1) = inf r≥m/2(1/(1 − br+1)), and the l.h.s. of(4.12)is non-negative, we de-
duce thatκ = 0,Pr+1Ψr+1 = 0 andm/(m − 1) = 1/(1 − br+1) sor = m/2. It remains to
show thatEq. (4.9)holds. For this, takeX = ej where{ej}j=1,...,q is a local orthonor-
mal frame. Forr = m/2, and by definition of the K̈ahlerian twistor operators, for all
j ∈ {1, . . . , q}, we obtain

∇ejΨr+1 + λ

q
(ej − iJej) · Ψr = 0. �
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